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Abstract. The properties of S = 1 anisotropic Heisenberg models with nondiagonal exchange between
axial and planar spin components are investigated using Monte Carlo techniques. The quantum nature is
taken into account in a semi-classical approximation. The ordering of the spins when applying an external
field with axial and planar components is discussed. It is argued that the quantum nature of the spins and
the nondiagonal exchange may explain the peculiar shape of the magnetic specific heat of FeBr2 as well as
the weakly first–order phase transition observed in the same compound when a tilted field is applied.

PACS. 75.10.-b General theory and models of magnetic ordering – 75.30.Kz Magnetic phase boundaries
(including magnetic transitions, metamagnetism, etc.) – 75.40.Mg Numerical simulation studies

1 Introduction

Metamagnets of Ising type display a field–induced phase
transition from an antiferromagnetic phase to a (satu-
rated) paramagnetic phase, the transition being of first
order at low temperatures and of second order at high
temperatures [1,2]. The first and second order transition
lines meet at a tricritical point. The layered antiferromag-
net FeCl2 is generally considered to be the textbook exam-
ple of this kind of antiferromagnets with a strong uniaxial
anisotropy [3].

Recently, there has been a renewed interest in the lay-
ered hexagonal antiferromagnet FeBr2 [4–12]. In the or-
dered phase of FeBr2 the spins of the iron ions are aligned
ferromagnetically in the triangular layers, the layers be-
ing stacked antiferromagnetically along the c–axis. Adja-
cent iron layers are separated by two nonmagnetic bromide
planes.

Investigations of de Azevedo et al. [4] revealed non-
critical anomalies in the antiferromagnetic phase of FeBr2

below the transition line to the paramagnetic phase, e.g.
maxima or shoulders in the temperature derivatives of
the magnetization at constant axial fields. The ingredi-
ents crucial for the existence of these noncritical spin fluc-
tuations are the effectively weak ferromagnetic intralayer
couplings and the large number of interlayer nearest neigh-
bors (due to the superexchange mediated by the bromide
planes) [5,6,9].

Surprisingly, measurements of the magnetic specific
heat [7] revealed a sharp peak superposed on a broad
shoulder or maximum below the transition to the para-
magnetic phase, in contrast to Monte Carlo simulations
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of Ising metamagnets [5–7,9] showing only a noncritical
shoulder or maximum. The peculiar shape of the specific
heat of FeBr2 was tentatively interpreted [7,8] as the sig-
nature of a new phase transition between two different
antiferromagnetic orderings of the z–components of the
spins. This new transition line was supposed to result
from the decomposition of the tricritical point into a bi-
critical point and a critical end point, a possible scenario
emerging from the mean field treatment of Ising meta-
magnets [1]. Remarkably, however, such a decomposition
of the tricritical point has not been observed in Monte
Carlo simulations of three-dimensional Ising antiferromag-
nets [13,6,14]. Furthermore, there are no indications of
an antiferromagnetic–antiferromagnetic phase transition
in the magnetometric measurements in an axial magnetic
field [4,11].

Recent investigations in an external field with an axial
and a planar component have shown evidence for jumps in
the magnetization parallel and perpendicular to the field
[12]. The authors suggest that this transition–like phe-
nomenon may involve a nondiagonal exchange between
the axial and planar components of the spins.

Hitherto, theoretical progress in understanding the
properties of FeBr2 has mainly been achieved by analyz-
ing simplified spin 1/2 Ising antiferromagnets [5–7,9,15].
However, the lowest state of an iron ion in FeBr2 is a
triplet consisting of a lowest doublet and a singlet [16].
Therefore, in reference [9], anomalies of the magnetiza-
tion and the specific heat have also been studied in S = 1
models.

In the present work, I shall present a Monte Carlo
study of S = 1 anisotropic Heisenberg models which in-
clude a nondiagonal exchange term between axial and pla-
nar spin components. The quantum nature of the S = 1
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spins will be taken into account in a semi–classical approx-
imation. Especially, I shall give a possible explanation of
the peculiar shape of the specific heat of FeBr2 and discuss
the spin–ordering in an axial and in a nonaxial field.

The paper is organized in the following way: in
Section 2 the anisotropic S = 1 Heisenberg models are
introduced and the semi–classical approximation used in
the simulations is discussed. Section 3 deals with the prop-
erties of ferromagnetic and antiferromagnetic models on a
tetragonal lattice. These simplified models are studied in
order to investigate the effects of (1) the semi–classical ap-
proximation, (2) different couplings between planar and
axial spin components, and (3) an external planar field
component. In Section 4 a realistic model for FeBr2, both
in an axial and in a tilted field, is discussed and the find-
ings are compared to the experiments. Some of the results
of this Section have already been published in a brief re-
port [17]. A short summary concludes the paper.

2 The models

The low-temperature properties of FeBr2 (space group
D3

3d) may be described by the effective S = 1 Heisenberg
Hamiltonian [18–20,9]

H = −
∑
α>β

Jαβ

{
1

η
SzαS

z
β + SxαS

x
β + SyαS

y
β

}
−
∑
α

D (Szα)2

−
∑
α

[HxS
x
α +HzS

z
α] +Hnd(Jxz) (1)

defined on a three-dimensional hexagonal lattice consist-
ing of a layered system of triangular lattice planes stacked
along the c–axis. Two different sets of interactions Jαβ
have been derived from inelastic neutron scattering stud-
ies [18,19]: the ferromagnetic nearest neighbor interaction
in the triangular layers perpendicular to the c–axis (cor-
responding to the z–direction), J1, is weakened by anti-
ferromagnetic in–layer couplings, extending either up to
next-nearest neighbors [18], J2, or up to third neighbors
[19], J3. Every spin is coupled antiferromagnetically with
the strength J ′ to ten spins in the neighboring layer [15].
The constant η describes the anisotropy in the exchange
interactions.

The second term in equation (1) describes a single–ion
anisotropy with the easy axis of the spin along the z–axis,
i.e. D > 0, whereas Hx and Hz are the planar and axial
components of an applied external field. Finally, the last
term, Hnd(Jxz), is a nondiagonal intralayer exchange be-
tween axial and planar spin components with the strength
Jxz [20], involving only products of pairs of spins. In order
to illustrate this interaction, which is invariant when ap-
plying the symmetry elements of the trigonal point group,
consider two neighboring in-layer sites, called 0 and 1, with
the same value of y. The nondiagonal exchange may be
written in the form [20]

Hnd(Jxz) =
∑
〈αβ〉

Hαβ(Jxz) (2)

where the sum is over nearest-neighbor in-layer sites 〈αβ〉.
For the pair 〈αβ〉 = 〈01〉 this exchange takes the form [20]

H01 = −Jxz (Sz0S
x
1 + Sx0S

z
1 ) . (3)

The other terms in equation (2) are obtained by applying
the appropriate symmetry elements transforming the pair
〈01〉 onto 〈αβ〉.

As this model, defined on a hexagonal lattice, is
rather complicated, it is preferable to study the effects
of the semi-classical approximation, of the nondiagonal
exchange, and of the planar field component first in sim-
pler models. Therefore, I consider also the following S = 1
Heisenberg Hamiltonian defined on a tetragonal lattice:

H = −J
∑
ijk

Sijk (Si+1 jk + Si j+1 k)− J ′
∑
ijk

SijkSij k+1

−D
∑
ijk

(
Szijk

)2
−
∑
ijk

HSijk +Hnd(Jxz) (4)

with S = (Sx, Sy, Sz) and H = (Hx, 0,Hz). Here i, j, k
(corresponding to the a, b, c–directions respectively) label
the lattice sites. The coupling in the layers, J , is ferro-
magnetic, whereas the coupling between adjacent layers,
J ′, may be antiferromagnetic (J ′ < 0) or ferromagnetic
(J ′ > 0). The single-ion anisotropy, D > 0, is consid-
ered in order to obtain ground states with nonvanish-
ing z–components of the spins. This may alternatively
be achieved by considering instead an anisotropy in the
exchange interactions (yielding three-dimensional XXZ
models).

For the tetragonal models, I will consider two different
couplings between planar and axial spin components: (1)
a term involving only products of pairs of spins, being in-
variant under the symmetry operations of the point group
C4v (this term can thus be considered to be analogous to
the nondiagonal exchange term, see Eqs. (1-3), proposed
for the description of FeBr2),

H1
nd(J

1
xz) = −J1

xz

∑
ijk

[
SzijkS

x
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x
ijkS

z
i+1 jk

+ SzijkS
y
i j+1 k − S

y
ijkS

z
i j+1 k

]
, (5)

or (2) a term involving products of squares of spins, be-
ing invariant under the symmetry operations of the space
group,

H2
nd(J

2
xz) = −J2

xz

∑
〈αβ〉

(Szα)
2

[(
Sxβ
)2

+
(
Syβ

)2
]
, (6)

where the sum is over nearest–neighbor in–layer sites.
I consider in the following S = 1 spins where the quan-

tum nature is treated in a semi–classical approximation:
the z–component is discretized and can only take the val-
ues 1, 0, or −1, whereas the spin length is fixed to be
|S| =

√
S (S + 1) =

√
2. Hence, the spins rotate in the

xy plane like a classical vector. The xy–components pro-
vide additional energy contributions as compared to the
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S = 1 Ising model, even at low temperatures. Note that
in reference [9] the spin length was fixed at 1, the spins
thus having a planar component only if Sz = 0, yielding
thermal properties similar to the S = 1 Ising model.

The ground states of the semi–classical antiferromag-
netic hexagonal and tetragonal models are readily ob-
tained provided the nondiagonal exchange constant is not
too large. In small axial fields (Hx = 0 and Hz < Hc

z =
−2NJ ′, N = 10 for the hexagonal model and N = 2
for the tetragonal model), the antiferromagnetic phase,
where the spins are aligned ferromagnetically in the lay-
ers, with an antiferromagnetic arrangement between sub-
sequent layers, is stable. For larger fields (Hz > Hc

z and
Hx = 0) the axial spin components Sz order ferromag-
netically, whereas the signs of the planar components (Sx

and Sy) still change from layer to layer. Note that in ab-
sence of an ordering planar field the ground state is in-
finitely degenerate, as the angle between the planar spin
components and, say, the x–axis is not fixed. Keeping Hz

constant and applying a planar field, Hx, yields a stable
phase where the xy–components of the spins are ordered
in a spin–flop phase, in which the magnetization per layer
in x–direction has the same value in each layer, whereas
the y–components have different signs in adjacent layers
but the same absolute value. For stronger planar fields the
y–components finally vanish, leading to a ferromagnetic
ordering of the planar spin components.

The effect, at T = 0, of a strong nondiagonal cou-
pling between spin components can be discussed for the
tetragonal ferromagnetic model. For small absolute values
of the nondiagonal exchange constant (be it J1

xz or J2
xz, see

Eqs. (5, 6)), the ground state is given by a ferromagnetic
phase where the spins have both axial and planar compo-
nents. Consider first the two–spin exchange with the cou-
pling constant J1

xz. Increasing
∣∣J1
xz

∣∣ does not change the
energy of the ferromagnetic phase, whereas the energy of a
second phase, consisting of ferromagnetically coupled lay-
ers with a stripped pattern in every layer, is decreased, un-
til, for

∣∣J1
xz

∣∣ > √2J +
√

2/4Hx, the stripped phase has, at
T = 0, a lower energy than the ferromagnetic phase, thus
forming the ground state. Note that the appearance of a
new ground state at the threshold value does not depend
on the sign of J1

xz. If the second spin exchange with neg-
ative coupling constants J2

xz is considered, the energy of
the ferromagnetic phase is increased when J2

xz decreases.

For couplings J2
xz < −

D+Hz+(1−
√

2)Hx
4 the ground state

is given by a ferromagnetic phase where the spins have
only a planar component. A positive coupling constant
J2
xz does not yield a new stable phase. The ground state

of the tetragonal antiferromagnetic model in presence of
a nondiagonal spin exchange can be discussed in similar
terms. In the following it is always supposed that the non-
diagonal coupling constant does not exceed the threshold
value which leads to a new ground state.

The thermal properties of the different models were
investigated by simulating systems consisting of L×L×L
Heisenberg spins, with L ranging from 10 to 30. As
the equilibration proved to be rather slow, the first
3×104 Monte Carlo steps per site were usually discarded.

Simulations for up to 20 different realizations with dif-
ferent random numbers were performed in order to
improve the statistics. Besides the energy E and the
specific heat C, the different components of the mag-
netization per layer, mx(i), my(i), and mz(i), and, for
the antiferromagnetic models, related quantities such as
the sublattice magnetizations, M1 =

(
m1
x,m

1
y,m

1
z

)
and

M2 =
(
m2
x,m

2
y,m

2
z

)
, referring to odd and even layers,

were computed. Here, the odd, respectively even layers
have the magnetization m1

z = +1, respectively m1
z = −1

at T = 0. The applied axial field points in the “+”–
direction, i.e. it tends to destabilize the even layers.

The ground state was always used as starting config-
uration for the simulations. In absence of a planar field
component, the state with Sx = 0 was chosen among the
infinity of degenerate ground states. Note that in this case
one encounters, after initial relaxation, a metastable state,
in which the system remains, possibly, for a long time, the
time depending on the size of the system and the temper-
ature. The computed planar spin components are then
supposed to be very close to their values in the thermo-
dynamic limit.

3 Thermal properties of the tetragonal
models

In this section, the thermal properties of the tetragonal
ferromagnetic and antiferromagnetic models in a planar
field (see Eq. (4)) are discussed. For a vanishing exter-
nal field, the Hamiltonian of the antiferromagnetic model
can be mapped in the usual way onto that of the ferro-
magnetic model. Therefore, I will in the following present
for Hx = 0 simulations of the ferromagnetic model, the
antiferromagnetic model being analyzed for Hx 6= 0.

Figure 1 shows the temperature dependent specific
heat and the magnetization obtained for vanishing non-
diagonal spin exchange for the ferromagnetic model, with
J = J ′, D = 3J ′, and Hx = 0. The specific heat has a two
peak structure, see Figure 1a: the peak at Tc is the critical
peak resulting from the disordering of the z–components
of the spins, whereas the low–temperature peak at Txy fol-
lows from the disordering of the planar spin components.
The magnetization data, see Figure 1b, show that the z–
components, in absence of a coupling between planar and
axial spin components, are not affected by this disorder-
ing.

This two peak structure of the specific heat should be
compared to the specific heat of the classical anisotropic
Heisenberg model showing only one maximum. For van-
ishing single–ion anisotropy the two peaks of the specific
heat of the semi–classical model merge to a single peak
located at the critical temperature of the corresponding
classical isotropic Heisenberg model.

It is clear from Figure 1 that, due to the discretization
of Sz and the presence of the single–ion anisotropy, the
disorderings of the axial and planar spin components are
largely decoupled. The z–components behave like S = 1
Ising spins and disorder at the critical temperature Tc
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Fig. 1. Monte Carlo data of (a) the specific heat and (b) the components of the magnetization as function of the temperature
for the S = 1 ferromagnetic Heisenberg model on a tetragonal lattice, with J = J ′, D = 3J ′, and Hx = Hz = 0. The system
size is L = 20. Here and in the following figures, the Boltzmann constant is set equal to one.
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Fig. 2. Specific heat C of the ferromagnetic model as a func-
tion of temperature for the two different nondiagonal spin ex-
change terms given in equations (5) (coupling constant J1

xy)
and (6) (coupling constant J2

xy), with J = J ′, D = 3J ′, and
Hx = Hz = 0. Open diamonds: J1

xy = 0.5J ′. Filled squares:
J2
xy = 0.5J ′. The data obtained without a nondiagonal cou-

pling (open circles) are included for comparison. Systems with
103 spins are considered. Only error bars larger than the size
of the symbols are shown.

(which increases with increasing value of D, yielding in
the limit D −→ +∞ the critical temperature of the 3d
Ising model), whereas the xy–components form a classical
three-dimensional plane-rotator disordering at the tem-
perature [21] Txy = 2.2J ′ (setting the Boltzmann constant
equal to one).

Note that the specific heat does not vanish when T
approaches 0. This is an artefact of the classical nature of
the planar spin components yielding limT→0C = 1/2.

In presence of the nondiagonal two–spin exchange with
coupling constant J1

xz (Eq. (5)), the ordering tempera-
ture Tc of the axial spin components is decreased, see
Figure 2. This results from the coupling, at temperatures
above Txy, of the ordered z–components to the disordered
planar components, yielding additional fluctuations which
lead to a decrease of the ordering temperature of the ax-
ial spin components. The value of Txy is not affected by
this nondiagonal spin–exchange, as long as

∣∣J1
xz

∣∣ is not too
large, see below. The spin exchange involving products of
squares of spins (Eq. (6)) also leads to a decrease of Tc

for negative values of J2
xz. This second coupling is not so

effective in destabilizing the ferromagnetically ordered z–
components, yielding a smaller decrease of Tc.

If the strength of
∣∣J1
xz

∣∣ is increased beyond a threshold
value (being around 0.65 J ′ for J = J ′ and D = 3J ′), a
jump in the axial component of the magnetization, Mz,
is observed, see Figure 3a. This discontinuous change,
which is induced by the disordering of the planar com-
ponents, shows up as a sharp peak in the specific heat
(Fig. 3b). At temperatures slightly above Txy some order-
ness of the z–components still persists, i.e. Mz 6= 0. In-
creasing further the temperature, Mz increases until, at Tc

(= 3.1 J ′ for the parameters of Fig. 3), the disordering of
the z–components finally takes place, yielding a second
peak in the specific heat. This behaviour of Mz may be
better understood when the temperature, starting from
the disordered high temperature phase, is decreased. At
Tc, the z–components order at the usual second order
phase transition. The increase of the ordering of the Sz

spins at temperatures below Tc increases the effect of the
nondiagonal exchange, yielding, after an initial slow ris-
ing, effectively a decrease of Mz, until, at Txy, the planar
components order. Note that in this case both Tc and Txy
are shifted to lower temperatures, the shift being larger
for larger values of

∣∣J1
xz

∣∣.
Interestingly, no jump in Mz occurs when the second

spin exchange with coupling constant J2
xz is considered.
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Fig. 3. Monte Carlo data of (a) the components of the magnetization and (b) the specific heat as function of the temperature
obtained for the ferromagnetic model on a tetragonal lattice, with J = J ′, D = 3J ′, Hx = Hz = 0, and J1

xz = 0.7J ′. Systems
with 20× 20× 20 spins are simulated.
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Fig. 4. The temperature dependent specific heat obtained for
the antiferromagnetic S = 1 Heisenberg model defined on a
tetragonal lattice when planar fields with different strengths
are applied, with J = −J ′, D = −3J ′, and Hz = 0. Nondiag-
onal couplings between axial and planar spin components are
not considered. The system size is L = 20. Only error bars
larger than the size of the symbols are shown.

For all values of J2
xz yielding the ferromagnetic ground

state with both planar and axial spin components, see
above, Mz changes continuously at Txy.

Figure 4 shows the specific heat of the antiferromag-
netic tetragonal model obtained when planar fields with
different strengths are applied and only diagonal cou-
plings are considered. Increasing the value of Hx moves
Txy to lower temperatures, whereas Tc is not changed.
In presence of a planar field unusual strong finite–size ef-
fects are observed when the planar spin components dis-
order, making it necessary to simulate at least systems of
length L = 20 in order to get a reliable estimate of Txy.
These strong finite–size effects are due to the presence

of the Sz = 0 states and do not show up for the cor-
responding classical plane–rotator, as I checked. Finally,
one should notice that, in presence of the nondiagonal cou-
pling (5) with the strength J1

xz, the total magnetization
in z–direction again changes discontinuously for values of∣∣J1
xz

∣∣ larger than the threshold value, which seems not to
depend on the value of Hx.

4 Thermal properties of the hexagonal model

Most of the features discussed in the previous Section for
the tetragonal models are also encountered if the realis-
tic hexagonal model (1) for FeBr2 is considered [17]. In
the following I will not reiterate the discussion on the val-
ues of the diagonal couplings of the spins (the interested
reader is referred to Ref. [9]) and choose a set of param-
eters, based on inelastic neutron scattering experiments
[18,19], for which pronounced anomalies in the magneti-
zation data and in the specific heat data are observed [9]:
J1 = −16.75J ′, J2 = 0, J3 = −0.29J1, and η = 0.78.

Figure 5 shows the specific heat and the sublattice
magnetizations obtained for strong single–ion anisotropy
D and vanishing nondiagonal interactions, with Hz =
−18J ′ and Hx = 0. The temperature dependent specific
heat C(T ) has a three peak structure: the peak at Tc is
the critical peak resulting from the disordering of the z–
components of the spins. Going to lower temperatures, one
encounters first the anomaly due to the noncritical spin
fluctuations. This peak does not correspond to a sharp
phase transition and does not show a significant size de-
pendency, in contrast to the critical peak at higher tem-
peratures [9]. Both peaks are present when computing the
specific heat of Ising metamagnets and involve solely Sz.
The third peak, again, results from the disordering of the
planar spin components, see Figure 5b.

The presence of the nondiagonal spin exchange moves
both Tc and the anomaly to lower temperatures, see Fig-
ure 6a, whereas Txy only decreases, moderately, for large
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Fig. 5. Monte Carlo data of (a) the specific heat and (b) the components of the magnetization per layer in odd (full symbols)
and even (open symbols) planes as function of the temperature for the S = 1 anisotropic Heisenberg model on the hexagonal
model in an axial field Hz = −18J ′, with D = −32.4J ′ and Jxz = 0. Systems with 20× 20× 20 spins are simulated. Error bars
are only shown when they are larger than the sizes of the symbols.
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Fig. 6. Temperature dependence of (a) the specific heat (the arrows indicate the critical temperatures, Tc), (b) the total
magnetization in z–direction, and (c) the order parameter of the planar spin components for different values of the nondiagonal
spin exchange between the planar and the axial spin components for the hexagonal antiferromagnetic model, with D = −32.4J ′

and Hz = −18J ′. Systems with 20×20×20 spins are considered. Only error bars larger than the size of the symbols are shown.
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Fig. 7. The specific heat C as a function of temperature for
different values of the single–ion anisotropy, with Jxz = 0 and
Hz = −18J ′. The system size of the simulated antiferromag-
netic hexagonal model is L = 20. Error bars are only shown
when they are larger than the sizes of the symbols.

values of Jxz. The anomaly in the specific heat approaches
the xy–peak, its height being reduced, when Jxz is in-
creased, and finally merges with the Txy peak. Again,
a threshold value exists for |Jxz|, at about 18 J ′, be-
yond which the total magnetization in z–direction, Mz =(
m1
z +m2

z

)
/2, changes discontinuously, see Figure 6b. The

disordering of the planar components at Txy is then also
clearly discontinuous, as can be seen in the jump of the or-
der parameter Mop

y =
(
m1
y −m

2
y

)
/2, see Figure 6c. Note

that the effect of Jxz does not depend on its sign.
Changing the value of the axial field Hz does not

change Txy if Jxz = 0. For nonvanishing nondiagonal cou-
plings, however, the position of the xy–peak is shifted to
lower temperatures when the axial field strength is in-
creased.

Figure 7 shows the influence of the single-ion aniso-
tropy D on the specific heat for Jxz = 0. Decreasing D,
the Tc peak and the anomaly are moved to lower tempera-
tures, whereas Txy is slightly increased. A similar behavior
is found for Jxz 6= 0, as shown in Figure 8 for Jxz = 16.2J ′

and D = −8.1J ′. For this choice of the parameters, the
noncritical spin fluctuations appear at lower temperatures
than the disordering of the planar spin components. The
resulting specific heat has a peculiar shape consisting of a
broad shoulder, the anomaly, and a superposed peak, the
Txy peak. This shape is reminiscent of the magnetic spe-
cific heat of FeBr2 and will be discussed in more details
below.

Applying an additional planar field component, Hx,
leads to a spin–flop phase in the xy–components at T = 0:
the y–components of the layer magnetization have oppo-
site signs in the different sublattices but the same absolute
value, whereas the x–components are the same in every
layer. As the axial field tends to stabilize the odd or “+”
layers and to destabilize the even or “−” layers, the ab-
solute values of m1

y and m2
y are close but not identical at

temperatures T > 0.
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Fig. 8. Temperature dependent specific heat C of the hexag-
onal model with Jxz = 16.2J ′ , D = −8.1J ′, and Hz = −18J ′,
for systems with 20× 20× 20 spins.
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Fig. 9. The components of the magnetization per layer in odd
(full symbols) and even (open symbols) planes as function of
temperature in presence of a planar field component, Hx =
0.75Hz, with Jxz = 16.2J ′, D = −8.1J ′, and Hz = −18J ′.
Hexagonal systems with 30× 30× 30 spins were simulated.

Figure 9 shows the different sublattice magnetizations
for Jxz = 16.2J ′, D = −8.1J ′, and Hx = 0.75Hz, i.e.
a field with axial and planar components is considered.
At low temperatures, the antiferromagnetic ordering of
the axial spin components and the spin–flop ordering of
the planar spin components is clearly seen. When the sys-
tem is heated, a drastic change in the y–component of the
layer magnetization takes place at Txy well below Tc. For
the chosen parameters, the change in the y–components
is continuous. For values of |Jxz| larger than the thresh-
old value, e.g. Jxz = 21.6J ′, this change occurs through
a jump in the layer magnetization leading to a first–
order transition. At first it may be surprising that the
y–components (and also the x–components) of the sub-
lattice magnetization are not equal at temperatures above
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Txy and below Tc, see Figure 9. In fact, this is explained
by the finite value of the axial field Hz which tends to
destabilize the z–components in the “−” layers, thus lead-
ing to different sublattice magnetizations in the different
layer types. As a result the y–components do not van-
ish at the phase transition at Txy, but take a small value
which is different for the two layer types. Only when the
z–components of the sublattice magnetizations are equal,
at Tc, do the y–components vanish and the x–components
take the same value. This effect is also observed when ap-
plying a field with axial and planar components to the
tetragonal antiferromagnetic model discussed in the pre-
vious Section.

Increasing the value of the planar field moves Txy to
lower temperatures, as it is also the case for the tetragonal
antiferromagnetic model. Furthermore, the specific heat
seems to loose its peculiar shape for large values of Hx.
At least for the temperature resolution used in the present
study, only one, rather broad, peak is seen instead of the
shoulder or maximum with a superposed sharp peak which
is observed for Hx = 0.

The presented data indicate that the quantum nature
of the S = 1 spins has to be taken into account in a the-
oretical description of the low temperature behaviour of
FeBr2. The semi–classical approach adopted in the present
work leads to different disordering temperatures for the
planar and the axial spin components. Hence, the anomaly
and the low-temperature xy peak are not intimately re-
lated. The modification of, for instance, the exchange Jxz
or the degree of Ising-like anisotropy D changes their re-
spective positions and may lead in an axial field to specific
heat data having the peculiar shape of the magnetic spe-
cific heat of FeBr2, see Figure 8. One should notice that, in
order to obtain this peculiar shape with the considered set
of diagonal coupling constants, the single–ion anisotropy
has to be decreased considerably as compared to the values
obtained from inelastic neutron scattering measurements.
Nevertheless, one must keep in mind that both D and the
strengths of the diagonal couplings were derived from the
experiments without taking a possible nondiagonal spin
exchange into account [18,19].

The evolution of the temperature dependent specific
heat of FeBr2 with increasing axial fields is also of inter-
est [7]. For small fields only one peak, the critical peak at
Tc, has been observed. For larger fields, a shoulder with
a superposed peak appears at lower temperatures. The
shoulder evolves into a maximum with increasing fields
whereas the superposed peak becomes sharper, the whole
being shifted to lower temperatures. This large–field be-
havior is well rendered in the simulations, as shown in
Figure 10. Indeed, the shoulder, resulting from the non-
critical spin fluctuations, changes into a maximum when
Hz is increased, whereas the xy–peak becomes sharper,
the anomaly in the axial spin components and the dis-
ordering of the planar spin components both moving to
lower temperatures. Note, however, that in the present
model the disordering of the xy–components also takes
place for small fields, see above.
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Fig. 10. Specific heat C vs. temperature as obtained from
Monte Carlo simulations for different strengths of the axial
field, with Jxz = 16.2J ′, D = −8.1J ′, and Hx = 0, for hexag-
onal systems with 203 spins. Error bars are only shown when
they are larger than the sizes of the symbols.

The magnetization data resulting from the Hamilto-
nian (1) also compare favorable to the experiments. For
example, without an applied planar field, the transverse
spin–ordering at Txy does not lead to a discontinuity of
the axial magnetization (if Jxy is not too large, see above),
in accordance with the magnetometric measurements [4],
showing no jump in the axial magnetization despite a
sharp peak in the specific heat. An additional planar field
component yields a low-temperature spin–flop phase in
the xy–components, which is compatible with the exper-
iment [12]. The change in the y-component in the mag-
netization per layer may then occur through a continuous
or a discontinuous phase transition, depending on the val-
ues of the parameters. Experimentally, one observes, in a
tilted field, a “weakly first–order” transition [12], thus be-
ing supposedly at the border between these two scenarios.

One should bear in mind when applying the present
results to FeBr2 that the Hamiltonian (1) may not be
complete. Indeed, the recent measurements in an nonax-
ial field [12] suggest the presence of in–plane anisotropy
in FeBr2, resulting, for example, from magnetoelastic cou-
plings. Thus an anisotropy is not contained in the present
Hamiltonian. Furthermore, one should recall that the
treatment of the Heisenberg Hamiltonian is only approx-
imative, due to the semi–classical approach adopted in
Section 2, leading to a strong decoupling between planar
and axial spin components.

Nevertheless, the present study shows the importance
of the nondiagonal spin exchange and of the quantum na-
ture of the S = 1 spins in describing the low-temperature
properties of FeBr2. Especially, the peculiar shape of the
specific heat in an axial field may be traced back to a
phase transition of the planar spin components, taking
place, rather by chance, close to the anomaly of the axial
spin components in the antiferromagnetic phase of FeBr2.
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5 Summary

Recent experimental investigations showed some intrigu-
ing transition–like phenomena in the magnetization and
in the specific heat of the layered antiferromagnet FeBr2.
The observed transverse spin–ordering in a nonaxial field
suggests the existence of a nondiagonal exchange between
the planar and the axial spin components [12].

Motivated by these experiments, the properties of S =
1 anisotropic Heisenberg models (both on a tetragonal
and on a hexagonal lattice) including nondiagonal spin ex-
change were investigated by Monte Carlo simulations. The
quantum nature of the spins were taken into account in
a semi–classical approximation, where Sz was discretized
and the spin length fixed to be |S| =

√
S (S + 1). Applied

external fields with axial and planar components were con-
sidered.

These simulations showed that, besides the disorder-
ing of the axial spin components at high temperatures, a
second phase transition involving the planar spin compo-
nents takes place at lower temperatures. For the tetrago-
nal models, the effects of two different nondiagonal spin
exchange terms were discussed. It was shown that the non-
diagonal coupling involving only products of two spins
could induce, for large values of the coupling constant,
a discontinuous change of the total axial magnetization at
the ordering temperature of the planar spin components,
whereas Mz always changed continuously when the sec-
ond exchange term involving products of squares of spins
was considered.

For the realistic antiferromagnetic model defined on a
hexagonal lattice, which is supposed to describe the low–
temperature properties of FeBr2, the jump in the total
magnetization in axial direction for strong nondiagonal
couplings was always mirrored by a corresponding jump
in the planar sublattice magnetizations. Furthermore, it
was shown that the anomaly of the axial spin components
in the antiferromagnetic phase [5,6,9] and the low–
temperature peak resulting from the disordering of the
planar spin components are not intimately related. In fact,
the data suggest that the transition–like features in the
specific heat (superposed peak on a shoulder or maximum)
and in the magnetization (jumps in the magnetization
observed in a tilted field) of FeBr2 are well described
if a nondiagonal coupling in the spin components and
the quantum nature of the spins are taken into account. It

seems, in the light of the present study, that the anomaly
in the axial spin components in the antiferromagnetic
phase and the disordering of the planar spin components
occur in FeBr2 closely one to the other rather by chance,
yielding, for instance, the measured peculiar shape of the
magnetic specific heat.

It is a pleasure to thank W. Selke for useful and stimulating
discussions.
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